Saw some more update on the F-14 Tomcat DCS module, niiice:
"For the F-14's ALR-67 (-B) and ALR-45 (-A), we're working on a new, in-depth simulation of RWR antennas and how they're affected by various factors. This also includes recreating the way the cockpit systems interpret and process the data received by the system.
AN/ALR-67 is the radar warning receiver (RWR) system used in the F-14B. The eyes of the system are four spiral high-band wide-field-of-view antennas looking front right (45°), back right (135°), back left (225°), and front left (315°). The two front antennas are located on the sides of the air intakes, and the two rear antennas are attached to the horizontal stabilisers. When the aircraft is pictured by a radar beam, the RWR antennas receive the emission. The closer the beam direction is to the antenna centre of the view, the stronger the registered signal is. The AN/ALR-67 electronics compares signal amplitudes from the antennas and uses the strongest two to reconstruct the incoming signal direction.
In the video, the simulated radar location is to the aircraft rear and below. When the left stabiliser rotates and moves the trailing edge up, the antenna rotates up too, and the incoming radar signal shifts away from its centre of view - thus the registered signal becomes weaker. At the same time, the signal in the front left antenna doesn't change. The electronics don't know about the horizontal stabiliser deflection and interpret the change as the emitter moving away from the rear left antenna field of view.
Heatblur AN/ALR-67 will simulate: radar wave attenuation, signal reception for each antenna independently, antenna condition (damage), signal amplification and threat direction reconstruction from the received signal amplitudes. Just as a real unit does, no faking or RWR-magic.
Here's a quick video from the Chromecat branch showing how the location of the RWR antennaes influences signal processing and display in the F-14."
And the gorgeous F-14 cockpit 3d detailed realtime render: